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Abstract
We study the order–disorder transition in colloidal suspensions under shear flow by performing
Brownian dynamics simulations. We characterize the transition in terms of a statistical property
of the time-dependent maximum value of the structure factor. We find that its power spectrum
exhibits power-law behaviour only in the ordered phase. The power-law exponent is
approximately −2 at frequencies greater than the magnitude of the shear rate, while the power
spectrum exhibits 1/ f -type fluctuations in the lower frequency regime.

1. Introduction

Order–disorder transitions such as solid–liquid transitions
and ferromagnetic transitions are distinctive phenomena in
equilibrium systems. The understanding of the transitions
has been a cornerstone for developments in equilibrium
statistical mechanics. Here, the notion of ‘order’ is not
restricted to equilibrium systems. For example, one can
modify a system exhibiting the order–disorder transition under
equilibrium conditions so that it can be observed even under
non-equilibrium conditions. Since non-equilibrium statistical
mechanics has not been established as yet, there is no
systematic understanding of this type of transition from the
viewpoint of statistical mechanics. Therefore, it is important
to study a typical example related to this question.

As a simple and realistic example, we consider a system
consisting of colloidal particles suspended in a liquid. It is
known that this system exhibits an order–disorder transition
under equilibrium conditions. In particular, the so-called
‘colloidal crystal’ is observed in the ordered phase. This
system may be regarded as an ideal model for the two
following reasons: first, one can observe such a crystalline
structure by using a microscope; second, one can control the
system as desired.

Recently, a couple of experiments have been reported
on colloidal suspensions under shear flow [1, 2]. Holmqvist
et al obtained the phase diagram for colloidal suspensions
under stationary Couette flow. They observed Bragg reflections
of laser light and measured the Bragg peak intensity of the
first Debye–Scherrer ring. From the time dependence of the

total Bragg peak intensity, they determined the crystal growth
rate and induction time. The phase boundary in their phase
diagram is determined by extrapolating both the growth rate
and induction times to zero.

Furthermore, there are several reports on numerical
experiments of colloidal suspensions under shear flow. Butler
and Harrowell performed Brownian dynamics simulations of
colloidal particles under shear flow [3, 4]. They obtained a
phase diagram of temperature versus shear rate. The phase
boundary of their phase diagram was determined from the
long-time average of the intensity of the Bragg peak with
the wavevector aligned in the shear gradient direction. The
‘order’ in their paper was assumed to appear when the intensity
exceeded half of the intensity value for scattering from a body-
centred cubic crystal aligned in the direction of the velocity
gradient.

These results suggest the existence of the order–disorder
transition. Here, let us recall that a crystal is defined as the state
with a translational symmetry breaking. Thus, if we attempt
to determine the ‘crystal’ phase, we should investigate the
structure factor S(k) for systems under shear flow. However,
from a simple consideration, we find that there is no crystal
phase in the rigorous sense, even if the existence of an
ordered state is suggested by several measurements. Now,
the objective of this study is to find a useful and thorough
characterization of the ordered state for systems under shear
flow. We attempt this characterization by performing Brownian
dynamics simulations of the colloidal suspensions under shear
flow.

This paper is organized as follows. In section 2, the
model that is investigated is introduced. Further, before
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discussing non-equilibrium cases in section 3 as preliminaries,
we review the order–disorder (crystal–fluid) transition under
equilibrium conditions and confirm the conventional criteria
for the crystallization. Section 3 comprises the main part of
this paper. We characterize the ordered phase in terms of the
time-dependent quantity sm(t), which is defined as the first
maximum of the structure factor ŝ(k, t) for configuration of
the particles at time t . We find that S̃m(ω), which is the
power spectrum of sm(t), exhibits a clear transition when the
temperature is changed. Concretely, in the ordered phase,
the power spectrum exhibits power-law behaviour, and there
are two different power-law exponent regimes divided by the
crossover frequency that is determined by the shear rate γ̇ :
S̃m(ω) � ω−2 in the high frequency regime (ω � 2πγ̇ ) and
1/ f -type fluctuations in the low frequency regime (ω � 2πγ̇ ).
Meanwhile, S̃m(ω) in the disordered phase is similar to the
white noise spectrum. Future problems are presented in the
final section.

2. Preliminaries

We consider a system consisting of N colloidal particles
suspended in a fluid where the stationary planar shear flow is
realized. The system is confined to a cubic cell with a length
L. The x-axis and z-axis are chosen to be the directions of the
shear velocity and velocity gradient, respectively. We impose
Lees–Edwards periodic boundary conditions [5, 6] to avoid
peculiarities near the boundaries of the cell.

We assume that Langevin dynamics can describe the
motion of the colloidal particles. The force exerted from
the fluid is represented by the Stokes force and Gaussian
noise. In other words, we neglect the so-called hydrodynamic
effects. We here remark that sheared suspensions with
hydrodynamics have been considered in [7, 8]. One of
them, Rastogi et al reported ordered ‘string states’ in high
shear rate regimes. These results suggest that hydrodynamic
effects play a prominent role in some kind of shear-induced
ordering under strong shear flow. However, in our paper, we
consider the situation with sufficiently small shear rate so that
hydrodynamic effects are not dominant.

Then, the particle positions ri (t) = (xi(t), yi (t), zi (t)),
where 1 � i � N , obey the Langevin equations

η
dri

dt
= −

∑

j �=i

∇U(|ri − r j |) + ηγ̇ zi (t)ex + ξ i (t), (1)

where η is a friction coefficient; γ̇ , the shear rate and ex ,
the unit vector that is parallel to the x-axis. The variable
ξ i (t) = (ξ x

i (t), ξ y
i (t), ξ z

i (t)) represents the Gaussian noise that
satisfies

〈
ξα

i (t)ξβ

j (t ′)
〉
= 2ηkBT δi jδ

αβδ(t − t ′). (2)

Here, kB is the Boltzmann constant and T is the temperature.
The superscripts α and β represent the Cartesian components.
Each pair of particles interacts via a screened Yukawa potential

U(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U0σ

(
exp(−κ(r − σ))

r
− exp(−κ(rc − σ))

rc

)
,

if r � rc,

0, otherwise.

(3)

Here, r is the distance between the particles; rc, the cutoff
length that simplifies the calculation in numerical simulations
and κ , a Debye screening parameter.

In this study, all the quantities are converted to
dimensionless forms by setting σ = U0 = η/kBT = kB = 1.
We estimate the correspondence between these parameters and
those of real experimental systems to be σ ∼ 102 nm, U0 ∼
10kBT and kBT/η = 10−11 m2 s−1. In our simulation, we
assume that κσ = 5.8, L/σ = 10, rc = 2.5 and Nσ 3/L3 = 1,
where the last condition implies that the volume fraction φ is
equal to 0.52. In other words, the Debye screening length κ−1

corresponds to 17 nm. The typical values of the parameters
used in our simulations are T ∼ 0.1 and γ̇ = 0.001, and
this situation corresponds to experimental systems wherein the
temperature is 300 K and the shear rate is 1 s−1. The systems
that have the values are available by laboratory experiments.

In our simulations, we discretized (1) with the time
step t = 0.0025. Note that in the arguments below,
〈· · ·〉 represents the statistical average in the steady states.
In the calculation we performed, we estimated 〈A〉 to be∫ t0+τ

t0
dt A(t)/τ , where t0 and τ were chosen as that larger

than 103, because we had confirmed that the relaxation time
is approximately 102.

Before considering the behaviour of colloidal suspensions
under shear flow, we review the transition observed in the
system under the equilibrium condition (γ̇ = 0). It is
expected that the crystalline arrangement of colloidal particles
is observed in the ordered phase of this system, while they
acquire a random configuration in the disordered phase. In
order to detect the order–disorder transition, one relies on the
definition of a crystal according to which the statistical weight
for configurations of colloidal particles breaks translational and
rotational symmetries. The translational symmetry breaking
can be quantified by S(k), which is defined as

S(k) =
〈

1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

1

N
|ρ̃(k)|2

〉
. (4)

Here, the angles θ and φ are defined as k = (k cos φ sin θ, k
sin φ sin θ, k cos θ), with k = |k|, and ρ̃(k) is the Fourier
transform of the number density ρ(r):

ρ̃(k) =
∫ ∞

−∞
d3r ρ(r) exp(−ik · r) (5)

with

ρ(r) = 1

N

N∑

i=1

δ(r − ri ). (6)

When S(k) has a component that is expressed by Dirac’s delta
function and the system is assumed to exhibit translational
symmetry breaking. Note that S(k) can be measured
experimentally because it is related to the Bragg peak intensity
of the laser light scattering.
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Figure 1. Plot of g(r) against r/σ . T = 0.12 (◦: open circles) and
0.18 (∗: stars) under equilibrium conditions.

In our simulations, instead of S(k), we use SL (k) defined
by

SL(k) = 1 + 4πρ

∫ L/2

0
dr (〈g(r; {ri})〉 − 1)

× sin(kr)

kr

sin(2πr/L)

2πr/L
, (7)

where ĝ(r; {ri}) represents the radial distribution function for
a given configuration {ri}, that is,

ĝ(r; {ri}) = 1

4πρr 2

dn(r)

dr
. (8)

Here, dn(r) is the average number of particles at distances
between r and r + dr from any particle, and its average is
taken over all the particles. Note that 〈ĝ(r; {ri})〉 is equal to
the standard radial distribution function g(r) (see figure 1).
It should be noted that g(r) is defined in the range where
r � L/2, owing to the periodic boundary conditions. The term
sin(2πr/L)/(2πr/L) appended in the integrand is the window
function to reduce the termination effects resulting from the
finite upper limit [9, 10]. Note that SL (k), as defined above,
approaches S(k) in the thermodynamic limit L → ∞.

As observed in figure 2, we cannot observe infinitely sharp
peaks owing to finite size effects. However, it is known that
there are empirical criteria for detecting the transition; one
of these criteria is Hansen–Verlet’s rule [11, 12]. According
to this rule, a fluid freezes when the first maximum value
of the static structure factor Sm exceeds 2.85. This criterion
has been tested and validated for various systems [11, 13].
Indeed, in our system, we find that Sm exhibits a discontinuous
jump at the transition temperature Tc whose value is estimated
between 0.16 and 0.165, as shown in figure 3. Further, when
the temperature T is lower than the transition temperature Tc,
Sm exceeds 2.85, while Sm is less than 2.85 in the higher
temperature regime. Thus, we conclude that the order–disorder
transition is observed.

As another order parameter for indicating the phase
transition, we consider the bond-orientational order parameter
Q6 [14, 15], which is determined by the set of bond vectors

Figure 2. Plot of SL(k) against kσ . T = 0.12 (◦: open circles) and
0.18 (∗: stars) under equilibrium conditions.

Figure 3. Sm as a function of T under the equilibrium condition
γ̇ = 0. The average values with error bars are displayed using 10
samples for each temperature.

{r̂i} as follows:

Q6 =
〈(

4π

13

6∑

l=−6

|Q̄l
6|2
)1/2〉

, (9)

with

Q̄l
6 = 1

Nb

Nb∑

i=1

Y l
6(θ(r̂i), φ(r̂i )). (10)

Here, each bond vector r̂i corresponds to the relative vector
between the neighbouring particles; Nb is the number of bond
vectors; Y l

6, the spherical harmonics function of degree six;
and θ(r̂i) and φ(r̂i ), the polar and azimuthal angles of r̂i ,
respectively. Here, we have defined the neighbouring particles
for a given particle as those within the sphere of radius rnn

around the given particle, where rnn is chosen as the first
minimum of g(r). The quantity Q6 represents the degree of
breakage of the continuous rotational symmetries, particularly,
the six-fold rotational symmetry of the configuration of the
particles. Its value is 0.574 52 for a face-centred cubic (fcc)
crystal, 0.510 69 for a body-centred cubic (bcc) crystal and 0
for liquids. We show the temperature dependence of Q6 in
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Figure 4. Q6 as a function of T under the equilibrium condition
γ̇ = 0. The average values with error bars are displayed using 10
samples for each temperature.

Figure 5. Sm as a function of T at γ̇ = 0.001. The average values
with the error bars are displayed using 10 samples for each
temperature.

figure 4. It is observed that Q6 decreases between T = 0.16
and 0.165 in a discontinuous manner. This result is consistent
with that indicated by Hansen–Verlet’s rule.

3. Questions and results

Even for colloidal suspensions under shear flow, we can
measure S(k) and Q6 in a manner identical to that of the
equilibrium cases. The results with γ̇ = 0.001 are displayed
in figures 5 and 6. These graphs are similar to those for the
equilibrium system. In the temperature regime lower than
T = 0.16, Sm exceeds 2.85, while it dips from 2.85 in
the regime higher than T = 0.17. Apparently, this result
indicates the existence of an order–disorder transition in this
situation. Similarly, Q6 shows a clear difference between the
low temperature regime and the high temperature regime, as
shown in figure 6.

We recall that a crystal is defined as the state that breaks
the translational symmetry of the statistical weight for the
configurations of the particles. In order to simplify the above
argument, we first consider the case T = 0 where particles

Figure 6. Q6 as a function of T at γ̇ = 0.001. The average values
with the error bars are displayed using 10 samples for each
temperature.

move coherently and form two-dimensional crystals in (x, y)

planes for a fixed z. In this state, the translational symmetries
in the x and y directions are broken for a given z. However,
the spatial period in the z direction is time dependent. Thus,
by considering the ensembles generated by the time evolution,
we expect that the translational symmetry in the z direction
recovers. Next, we consider the finite temperature cases. A
translational symmetry is expected to exist in the z direction,
and according to Mermin–Wagner’s theorem, which states that
there is no translational symmetry breaking in two-dimensional
systems, we do not expect the symmetry breaking to occur in
the (x, y) planes. Thus, we conclude that there is no crystal in
colloidal suspensions under shear flow.

Although the structure factor does not involve Dirac’s
delta peak even in the thermodynamic limit, figures 5 and 6
suggest the existence of a discontinuous transition. Therefore,
the nature of this transition should be different from that in
equilibrium systems. In order to further clarify the above
difference, we attempt to study this transition from another
viewpoint.

In particular, we consider the dynamical features that non-
equilibrium systems possess. First, let us observe the variation
of the structure factor with time. As an example, we define the
time-dependent structure factor ŝ(k, t) that is determined for
each particle configuration {ri (t)} at time t :

ŝ(k, t) = 1 + 4πρ

∫ R

0
dr (g(r; {ri(t)}) − 1)

× sin(kr)

kr

sin(2πr/L)

2πr/L
. (11)

Note that SL (k) defined in (7) is equal to 〈ŝ(k, t)〉. In figure 7,
the results for two different cases T = 0.14 and 0.18 are
displayed by fixing the shear rate to be γ̇ = 0.001. From
this figure, it is observed that the maximum intensity of ŝ(k, t)
at T = 0.14 varies with time more significantly than that at
T = 0.18. Since there appears to be a qualitative difference,
we focus on the time dependence of the first maximum of
ŝ(k, t) with respect to k, which is denoted by sm(t).

In figure 8, typical data of sm(t) are displayed. It is clearly
observed that sm(t) exhibits a considerably larger fluctuation in
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Figure 7. Time evolution of the structure factor for T = 0.14 (left)
and T = 0.18 (right).

Figure 8. sm(t) for T = 0.14 (◦: open circles) and T = 0.18
(∗: stars).

the low temperature case (T = 0.14) as compared to that in the
high temperature case (T = 0.18). In order to characterize the
difference between the two cases quantitatively, we consider
the spectra of the fluctuations, which are defined by

S̃m(ω) =
〈∣∣∣∣
∫ ∞

−∞
dt sm(t) exp(−iωt)

∣∣∣∣
2
〉

. (12)

The shapes of the power spectra shown in figure 9 indicate
a distinct transition at a certain temperature Tc. Indeed, for
the temperatures T = 0.14 and 0.16, the power-law behaviour
S̃m(ω) � ω−2 is observed in the frequency regime ω � 2πγ̇ .
Moreover, focusing on the behaviour in the low frequency
regime ω � 2πγ̇ , we observe the 1/ f -type fluctuation.
Meanwhile, the spectrum becomes flat at the temperature T =
0.18. Therefore, for example, by plotting S̃m(2πγ̇ ) against T ,
we can observe a discontinuous transition at T = Tc, as shown
in figure 10.

Figure 9. Spectra S̃m(ω) as a function of � = ω/2πγ̇ at fixed shear
rate γ̇ = 0.001. T = 0.14 (closed diamonds), 0.16 (open circles) and
0.18 (stars). The solid line represents the ω−2 slope, and the dashed
line denotes the ω−1 slope.

Figure 10. S̃m(2πγ̇ ) as a function of T . The average values with
error bars are determined by using 10 samples for each temperature.

4. Concluding remarks

The results in this paper motivate us to study the system in
more detail. Before concluding the paper, we address two
important future problems.

First, the mechanism of the power-law behaviours of
S̃m(ω) should be elucidated on the basis of ‘defects’ in the
ordered phase. Here, a defect means a region where the
configuration of the particles is locally destroyed by shear
flow. Obviously, the fluctuating motions of defects are related
to large fluctuations of sm(t). We also preliminary observed
that a defect has a typical lifetime γ̇ −1 [16]. Based on
these observations, we conjecture that the power-law behaviour
S̃m(ω) � ω−2 might be related to the generation and
annihilation of defects in the ordered phase under shear flow.
Therefore, by focusing on the elementary processes of defect
dynamics, we may understand this power-law behaviour.
Furthermore, the power-law behaviour S̃m(ω) � ω−1 observed
in the low frequency regime suggests the existence of a
more complex mechanism. As one possibility, a cooperative
phenomenon involving the ‘defects’ may occur. In order
to explore this possibility, we should investigate the spatial
correlation of the dynamical events of the defects.

The second problem is related to the thermodynamic
aspects of the order–disorder transition in colloidal dispersions
under shear flow. From the analogy of the order–disorder
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transition in equilibrium systems, we conjecture the existence
of a latent heat associated with the order–disorder transitions
in non-equilibrium systems. However, the heat is apparently
generated because the system is in a non-equilibrium steady
state. With regard to this problem, Oono and Paniconi
proposed a remarkable concept in which the excess heat plays
a prominent role in a thermodynamic framework for non-
equilibrium steady states [17]. Indeed, by employing this
quantity, the second law of thermodynamics has been extended
to transitions between non-equilibrium steady states within the
Langevin description [18]. Thus, we can consider the latent
(excess) heat even for colloidal suspensions under shear flow.

In summary, we have characterized the order–disorder
transition of colloidal suspensions under shear flow by
employing dynamical features of the structure factor because
there exists no ‘crystal’ under the shear flow. Defining
a new order parameter S̃m(ω), we have detected the
transition by measuring the temperature dependence of
S̃m(2πγ̇ ), as shown in figure 10. We also have found
that the discontinuous transition accompanies the 1/ f -type
fluctuations in the low frequency regime. By a more detailed
study of the above-mentioned problems, we hope to gain a
thorough understanding of the nature of non-equilibrium phase
transitions.
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